Digital Holographic Microscopy: A Quantitative Label-Free Microscopy Technique for Phenotypic Screening

نویسندگان

  • Benjamin Rappaz
  • Billy Breton
  • Etienne Shaffer
  • Gerardo Turcatti
چکیده

Digital Holographic Microscopy (DHM) is a label-free imaging technique allowing visualization of transparent cells with classical imaging cell culture plates. The quantitative DHM phase contrast image provided is related both to the intracellular refractive index and to cell thickness. DHM is able to distinguish cellular morphological changes on two representative cell lines (HeLa and H9c2) when treated with doxorubicin and chloroquine, two cytotoxic compounds yielding distinct phenotypes. We analyzed parameters linked to cell morphology and to the intracellular content in endpoint measurements and further investigated them with timelapse recording. The results obtained by DHM were compared with other optical label-free microscopy techniques, namely Phase Contrast, Differential Interference Contrast and Transport of Intensity Equation (reconstructed from three bright-field images). For comparative purposes, images were acquired in a common 96-well plate format on the different motorized microscopes. In contrast to the other microscopies assayed, images generated with DHM can be easily quantified using a simple automatized on-the-fly analysis method for discriminating the different phenotypes generated in each cell line. The DHM technology is suitable for the development of robust and unbiased image-based assays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy.

We have previously developed a new way for nonscanning second-harmonic generation (SHG) microscopy [Opt. Lett. 34, 2450 (2009)]. Based on digital holography, this technique captures, in single-shot hologram acquisition, both the amplitude and the phase of a coherent SHG radiation, which makes possible second harmonic phase microscopy. In this work, we present holographic SHG phase microscopy of...

متن کامل

Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy.

Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase im...

متن کامل

Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography.

Manual cell counting is time consuming and requires a high degree of skill on behalf of the person performing the count. Here we use a technique that utilizes digital holography, allowing label-free and completely non-invasive cell counting directly in cell culture vessels with adherent viable cells. The images produced can provide both quantitative and qualitative phase information from a sing...

متن کامل

Towards High-Throughput Phenotypic and Systemic Profiling of in vitro Growing Cell Populations using Label-Free Microscopy and Spectroscopy : Applications in Cancer Pharmacology

Aftab, O. 2014. Towards High-Throughput Phenotypic and Systemic Profiling of in vitro Growing Cell Populations using Label-Free Microscopy and Spectroscopy. Applications in Cancer Pharmacology. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1045. 50 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9082-9. Modern techniques like automated micros...

متن کامل

Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy.

We use in-line digital holographic microscopy to image freely swimming E. coli. We show that fitting a light scattering model to E. coli holograms can yield quantitative information about the bacterium's body rotation and tumbles, offering a precise way to track fine details of bacterial motility. We are able to extract the cell's three-dimensional (3D) position and orientation and recover beha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014